Record Details

Title Simulation of Fluid Flow in Naturally Fractured Poro-thermoelastic Reservoir
Authors Qingfeng Tao and Ahmad Ghassemi
Year 2010
Conference Stanford Geothermal Workshop
Keywords Poro-Thermoelasticity; Fracture Aperture; Fracture Permeability, Displacement Discontinuity Method
Abstract This paper examines the problem of injection/extraction into a naturally fractured rock by considering the role of poro-thermoelastic processes and joint deformation on reservoir permeability change and fracture pressure variation. This is accomplished by considering fluid flow and heat transport in a 2D model of a fracture network that is based on the displacement discontinuity technique. It is assumed that the fracture aperture and joint deformation are significantly less than the joint lengths, there are a large but finite number of joints, and fluid in the fractures is compressible. The total normal stress in the direction normal to the joint varies non-linearly but, in the shear direction the joint stresses are proportional to deformation when the deformation are in the elastic range, and the joint dilation is considered. Numerical experiments are presented to illustrate the role of poro-thermoelatic effects as well as joint constitutive behavior on the reservoir response to injection and extraction.
Back to Results Download File