Record Details

Title Geochemical Tracers: Capabilities and Potential for Geothermal Reservoir Characterisation
Authors Bridget F. Ayling and Peter E. Rose
Year 2013
Conference New Zealand Geothermal Workshop
Keywords tracers, geothermal, reservoir, flow, hydraulic, residence time, chemistry
Abstract Geochemical tracers have been used for many years to improve the understanding of reservoir dynamics in geothermal systems. Tracers can be classified as either conservative or reactive, and can be used in liquid-phase, vapour-phase or two-phase reservoirs at temperatures up to and above 300°C. They are commonly used to map flow pathways between injection and production wells in a geothermal field, to monitor the effects of reinjection and identify wells that might experience premature thermal breakthrough if left unmanaged. Tracer tests also provide information about reservoir fluid residence time, fluid recharge location or direction, swept pore volumes, interwell connectivity, temperatures, fracture surface area, flowstorage capacity relationships and volumetric fluid sweep efficiencies. In addition, tracer data can be used with numerical transport codes to help validate 2D or 3D reservoir models. Thus, tracer tests can provide powerful insight into geothermal reservoir characteristics, and they can be performed at many stages of project development, from small-scale demonstration projects (e.g. an injectionproduction well doublet) through to large-scale commercial fields (e.g. Wairakei, New Zealand). New ‘smart’ tracers have the potential to be used with a single well to evaluate changes in fracture surface area following reservoir stimulation, and thus have applications to both conventional and unconventional (engineered) geothermal projects.
Back to Results Download File